Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 23(7): 277, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229571

RESUMO

NIR spectroscopy is a non-destructive characterization tool for the blend uniformity (BU) assessment. However, NIR spectra of powder blends often contain overlapping physical and chemical information of the samples. Deconvoluting the information related to chemical properties from that associated with the physical effects is one of the major objectives of this work. We achieve this aim in two ways. Firstly, we identified various sources of variability that might affect the BU results. Secondly, we leverage the machine learning-based sophisticated data analytics processes. To accomplish the aforementioned objectives, calibration samples of amlodipine as an active pharmaceutical ingredient (API) with the concentrations ranging between 67 and 133% w/w (dose ~ 3.6% w/w), in powder blends containing excipients, were prepared using a gravimetric approach and assessed using NIR spectroscopic analysis, followed by HPLC measurements. The bias in NIR results was investigated by employing data quality metrics (DQM) and bias-variance decomposition (BVD). To overcome the bias, the clustered regression (non-parametric and linear) was applied. We assessed the model's performance by employing the hold-out and k-fold internal cross-validation (CV). NIR-based blend homogeneity with low mean absolute error and an interval estimates of 0.674 (mean) ± 0.218 (standard deviation) w/w was established. Additionally, bootstrapping-based CV was leveraged as part of the NIR method lifecycle management that demonstrated the mean absolute error (MAE) of BU ± 3.5% w/w and BU ± 1.5% w/w for model generalizability and model transferability, respectively. A workflow integrating machine learning to NIR spectral analysis was established and implemented. Impact of various data learning approaches on NIR spectral data.


Assuntos
Excipientes , Espectroscopia de Luz Próxima ao Infravermelho , Anlodipino , Artefatos , Viés , Calibragem , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Excipientes/química , Aprendizado de Máquina , Pós/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Comprimidos , Tecnologia Farmacêutica/métodos
2.
J Pharm Biomed Anal ; 210: 114581, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35026592

RESUMO

Particle size distribution (PSD), spatial location and particle cluster size of ingredients, polymorphism, compositional distribution of a pharmaceutical product are few of the most important attributes in establishing the drug release-controlling microstructural and solid state properties that would be used to (re)design or reproduce similar products. There are numerous solid-state techniques available for PSD analysis. Laser diffraction (LD) is mostly used to study PSD of raw materials. However, a constraint of LD is the interference between the active pharmaceutical ingredients (API) and excipients, where it is very challenging to measure API size in a tablet. X-ray powder diffraction (XRPD) is widely employed in establishing the polymorphism of API and excipients. This research examined a commercial osmotic tablet in terms of extracting solid state properties of API and functional excipient by Raman Imaging. Establishing repeatability, reproducibility, and sample representativeness when the samples are non-uniform and inhomogeneous necessitates multiple measurements. In such scenarios, when employing imaging-based techniques, it can be time-consuming and tedious. Advanced statistical methodologies are used to overcome these disadvantages and expedite the characterization process. Overall, this study demonstrates that Raman imaging can be employed as a non-invasive and effective offline method for assessing the solid-state characteristics of API and functional excipients in complex dosage forms like osmotic tablets.


Assuntos
Excipientes , Análise Espectral Raman , Tamanho da Partícula , Reprodutibilidade dos Testes , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...